Math, asked by allie3, 1 year ago

prove that. sin80-cos70=cos50

Answers

Answered by ajayshotia
36
sin80=cos50+cos70
cosC+cosD=2cosC+D/2cosC-D/2
=2cos120/2cos-20/2
2cos60cos(-10)
=2×1/2cos10=cos10=sin(90-10)=sin80
Answered by boffeemadrid
31

Answer:


Step-by-step explanation:

We have to prove that sin80^{{\circ}}-cos70^{{\circ}}=cos50^{{\circ}}

sin80^{{\circ}}=cos50^{{\circ}}+cos70^{{\circ}}

Now, using formula, cos(C+D)= 2cos\frac{C+D}{2}cos\frac{C-D}{2}

sin80^{{\circ}}=2 cos\frac{50+70}{2}cos\frac{50-70}{2}

sin80^{{\circ}}=2cos60^{{\circ}}cos(-10)^{{\circ}}

We know that,cos(-\alpha)=cos\alpha,therefore,

sin80^{{\circ}}=2cos60^{{\circ}}cos10^{{\circ}}

sin80^{{\circ}}=2{\times}\frac{1}{2}{\times}cos(90^{{\circ}}-80^{{\circ}})

sin80^{{\circ}}=sin80^{{\circ}}

Since, L.H.S=R.H.S, hence proved.

Similar questions