Prove that : sin80°-cos70°=cos50°
Answers
Answered by
23
SOLUTION
=) sin80°- cos70°= cos50°
=) sin 80°= cos50°+ cos70°
Take R.H.S:
=)cos50° +cos70°
=) 2cos 60° cos(-10°)
=){cos(-A)= cosA}
=) 2× 1/2× cos 10°
=) cos10°
=) cos(90°-80°)
=) {cos(90°-A)= sin A}
=) sin 80° L.H.S
Hence proved
Answered by
22
Step-by-step explanation:
Consider LHS:
sin80∘−cos70∘
=sin80∘−cos(90∘−20∘)
=sin80∘−sin20∘
=2sin(80∘−20∘2)cos(80∘+20∘2){∵sinA−sinB=2sin(A−B2)cos(A+B2)}
=2sin30∘cos50∘
=2×12cos50∘
=cos50∘
= RHS
Hence, LHS = RHS.
Similar questions