Prove that
sin8theeta-cos8theeta = (sin2theeta-cos2theeta)(1-2sin2theeta.cos2theeta)
Answers
Answered by
1
Step-by-step explanation:
We have ,
(sin
8
θ−cos
8
θ)=(sin
4
θ)
2
−(cos
4
θ)
2
=(sin
4
θ−cos
4
θ)(sin
4
θ+cos
4
θ)
⇒LHS=(sin
2
θ−cos
2
θ)(sin
2
θ+cos
2
θ)(sin
4
θ+cos
4
θ)
⇒LHS=(sin
2
θ−cos
2
θ)[(sin
2
θ)
2
+(cos
2
θ)
2
+2sin
2
θcos
2
θ−2sin
2
θcos
2
θ]
⇒LHS=(sin
2
θ−cos
2
θ)[(sin
2
θ+cos
2
θ)
2
−2sin
2
θcos
2
θ]
⇒LHS=(sin
2
θ−cos
2
θ)(1−2sin
2
θcos
2
θ)=RHS
Attachments:
Similar questions