prove that sinA/1-cosA=cosecA+cotA
Answers
Step-by-step explanation:
R.T.P : sinA / 1 - cosA = cosecA + cotA
⇒ ×
=
= by
=
=
= cosecA + cotA as cosecA = 1/sinA & cotA = cosA/sinA
Answer:
Proved by solving equation sinA/1-cosA = cosecA+cotA
Step-by-step explanation:
Here given that
sinA/1-cosA = cosecA+cotA
Let solve Right hand side of given eqation
RHS
cosecA + cotA = (1/sinA) + (cosA/sinA)
(Because cosecA=1/sinA and cotA=cosA/sinA)
Divide (1/sinA) + (cosA/sinA) by sinA, We get
= (1+cosA)/sinA
Divide numerator and denominator by (1-cosA), We get
= (1+cosA)*(1-cosA)/sinA*(1-cosA)
But We know that (x+y)( x-y)=x²-y²
= (1-cos²A)/sinA*(1-cosA)..............................(1)
But we know the identity sin²A+cos²A = 1
therefore sin²A = 1-cos²A
Put the value of sin²A = 1-cos²A in equation (1)
= sin²A/sinA*(1-cosA)
= sinA/(1-cosA)
This is Left hand side of given equation
Therefore LHS=RHS
Hence proved.