Math, asked by slakshminarayana1, 11 months ago

prove that sinA/1-cosA=cosecA+cotA ​

Answers

Answered by smitamahapatra2090
0

Step-by-step explanation:

R.T.P : sinA / 1 - cosA = cosecA + cotA

\frac{sinA}{1 - cosA} × \frac{1 + cosA}{1 + cosA}

= \frac{sinA( 1 + cosA ) }{1 - cos^2A}

= \frac{sinA ( 1 + cosA)}{sin^2A}  by sin^2A = 1 - cos^2A

= \frac{1 + cosA}{sinA}

= \frac{1}{sinA}  + \frac{cosA}{sinA}

= cosecA + cotA  as cosecA = 1/sinA & cotA = cosA/sinA

Answered by revaliyavirender
0

Answer:

Proved by solving equation sinA/1-cosA = cosecA+cotA

Step-by-step explanation:

Here given that

sinA/1-cosA = cosecA+cotA

Let solve Right hand side of given eqation

RHS

cosecA + cotA = (1/sinA) + (cosA/sinA)

               (Because cosecA=1/sinA    and cotA=cosA/sinA)

                   Divide  (1/sinA) + (cosA/sinA) by sinA, We get

                 = (1+cosA)/sinA

  Divide numerator and denominator by (1-cosA), We get

                 =  (1+cosA)*(1-cosA)/sinA*(1-cosA)

  But We know that (x+y)( x-y)=x²-y²

                 = (1-cos²A)/sinA*(1-cosA)..............................(1)

        But we know the identity  sin²A+cos²A = 1

                          therefore sin²A = 1-cos²A

                 Put the value of  sin²A = 1-cos²A in equation (1)

                     = sin²A/sinA*(1-cosA)

                     = sinA/(1-cosA)  

This is Left hand side of given equation

Therefore LHS=RHS

Hence proved.

Similar questions