Math, asked by parvezareeba10, 7 months ago


Prove that
sinA/1-cosA=
cosecA+ cotA​

Answers

Answered by kaushik05
5

To prove:

 \star \:  \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }  =  \csc( \alpha )  +  \cot( \alpha )

Solution:

 \implies \:  \frac{ \sin( \alpha ) }{ 1 -  \cos( \alpha ) }

• Rationalise the denominator , we get :

 \implies \:  \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }   \times  \frac{1 +  \cos }{1 + \cos( \alpha ) }   \\  \\  \implies \:  \frac{ \sin( \alpha ) (1  +   \cos( \alpha ) )}{1 -  { \cos }^{2} \alpha  }  \\  \\  \implies \:  \frac{ \sin( \alpha )(1  +  \cos( \alpha ) ) }{ { \sin }^{2} \alpha  }  \\  \\  \implies \:  \frac{ \sin( \alpha ) }{ { \sin }^{2} \alpha  }  +  \frac{ \sin( \alpha ) \cos( \alpha )  }{ { \sin }^{2}  \alpha }  \\  \\  \implies \:  \frac{1}{ \sin( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\  \\  \implies \:  \csc( \alpha )  +  \cot( \alpha )

   \boxed{ \huge{ proved}}

Answered by parry8016
1

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions