Math, asked by ilsakhalid3010, 10 months ago

prove that (sinA +1+ cosA) (sinA-1+ cosA) secA cosecA = 2

Answers

Answered by 1dipesh2kumar3mahato
4

Step-by-step explanation:

LHS=(sinA+1+cosA)(sinA-1+cosA)secA*CosecA. =[(sinA+cosA)+1][sinA+cosA-1]secA*cosecA

=[(sinA+cosA)^2-(1)^2]secA*cosecA

=(sin^2A+2sinA*cosA+cos^2A-1)secA*cosecA

=[(sin^2A+cos^2A)+2sinA*cosA-1]secA*cosecA

=(1+2sinA*cosA-1)secA*cosecA

=2sinA*cosA*secA*cosecA

=2sinA*cosA*(1/sinA)*(1/cosA)

=2=RHSproved

Answered by amansharma264
2

EXPLANATION.

⇒ (sin A + 1 - cos A)(sin A - 1 + cos A)sec A * cosec A = 2.

As we know that,

⇒ secθ = 1/cosθ.

⇒ cosecθ = 1/sinθ.

⇒ sin²θ + cos²θ = 1.

⇒ cos²θ = 1 - sin²θ.

Now, we can write expression as,

⇒ [(sin A + cos A)² - (1)²]sec A x cosec A.

⇒ [sin²A + cos²A + 2sinAcosA - 1]sec A x cosec A.

⇒ [1 + 2sinAcosA - 1]sec A x cosec A.

⇒ [2sinAcosA]sec A x cosec A.

⇒ [2sinAcosA] x 1/(cos A x sin A).

⇒ 2.

Hence proved.

                                                                                                               

MORE INFORMATION.

Trigonometric ratios of multiple angles.

sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ).

cos2θ = 2cos²θ - 1 = 1 - 2sin²θ = cos²θ - sin²θ = (1 - tan²θ)/(1 + tan²θ).

tan2θ = 2tanθ/(1 - tan²θ).

sin3θ = 3sinθ - 4sin³θ.

cos3θ = 4cos³θ - 3cosθ.

tan3θ = (3tanθ - tan³θ)/(1 - 3tan²θ).

Similar questions