Math, asked by Vhargav, 2 months ago

Prove that SinA (1+ TanA) + Cos A (1+ CotA) =SecA + Cosec A​

Answers

Answered by JBJ919
1

Answer:

sinA(1+tanA)+cosA(1+cotA)

=sinA+sinAtanA+cosA+cosAcotA

=sinA+sinA  

cosA

sinA

​  

+cosA+cosA  

sinA

cosA

​  

     [∵tanA=  

cosA

sinA

​  

,cotA=  

sinA

cosA

​  

]

=sinA+  

cosA

sin  

2

A

​  

+cosA+  

sinA

cos  

2

A

​  

 

=  

sinAcosA

sin  

2

Acos+sin  

3

A+cos  

2

AsinA+cos  

3

A

​  

 

=  

sinAcosA

sinAcosA(sinA+cosA)sin  

3

A+cos  

3

A

​  

 

=  

sinAcosA

sinAcosA(sinA+cosA)(sin  

2

A+cos  

2

A−cosAsinA)

​  

 

[∵a  

3

+b  

3−(a+b)(a  

2

−ab+b  

2

)

]

=  

sinacosA

(sinA+cosA)sinAcosA+sin  

2

A+cos  

2

A−sina+cosA

​  

 

=  

sinacosA

(sinA+cosA).1

​  

[∵sin  

2

a+cos  

2

A=1

]

=  

sinAcosA

sinA

​  

+  

sinAcosA

cosA

​  

 

=  

CosA

1

​  

+  

sina

1

​  

 

=secA+cosec A.

Step-by-step explanation:

Answered by Amitrai1234
5

Answer:

secA+cosecA=secA+cosecA

Similar questions