Prove that sinA(1+tanA) + cosA(1+cotA) = secA + cosecA
Answers
Answered by
2
Answer:
here's ur prove
Step-by-step explanation:
Thumbs up!!!!!!
sin(1+sin/cos)+cos(1+cos/sin)
sin(cos+sin/cos)+cos(sin+cos/sin)
(sin+cos)(sin/cos+cos/sin)
(sin+cos)/(sincos)
1/cos+1/sin
sec+cosec
tarun984157:
Thank you
Answered by
1
Answer:
sinA * (1 + tan) + cosA * (1 + cotA) = secA + cscA
LS = sinA * (1 + sinA/cosA) + cosA * (1 + cosA/sinA)
= sinA + sin^2A/cosA + cosA + cos^2A/sinA => rewrite as:
= sinA + cos^2A/sinA + cosA + sin^2A/cosA
= (sin^2A + cos^2A)/sinA + (cos^2A + sin^2A)/cosA
= 1/sinA + 1/cosA
= cscA + secA
= secA + cscA = RS
Similar questions