Math, asked by ashrisheegaj, 1 year ago

Prove that : sinA(1+tanA) +cosA(1+cotA) = secA + cosecA

Answers

Answered by nicku1t
60
answer starts from above ok
Attachments:
Answered by mysticd
23

Answer:

sinA(1+tanA)+cosA(1+cotA)=secA+cosecA

Step-by-step explanation:

LHS=sinA(1+tanA)+cosA(1+cotA)

=sinA[1+\frac{sinA}{cosA}]+cosA[1+\frac{cosA}{sinA}]

=sinA[\frac{cosA+sinA}{cosA}]+cosA[\frac{sinA+cosA}{sinA}

=\left(\frac{sinA}{cosA}\right)(sinA+cosA)+\left(\frac{cosA}{sinA}\right)(sinA+cosA)

=(sinA+cosA)[\frac{sinA}{cosA}+\frac{cosA}{sinA}]

=(sinA+cosA)[\frac{sin^{2}A+cos^{2}A}{sinAcosA}]

=(sinA+cosA)[\frac{1}{sinAcosA}]

/*By Trigonometric identity:

sin²A+cos²A = 1 */

=\frac{sinA}{sinAcosA}+\frac{cosA}{sinAcosA}

=\frac{1}{cosA}+\frac{1}{sinA}

=secA+cosecA

=RHS

Therefore,

sinA(1+tanA)+cosA(1+cotA)=secA+cosecA

•••♪

Similar questions