prove that
sinA(1+tana) +cosA(1+cotA)=secA+cosecA
please give me the answer
Answers
Answered by
0
Answer:
To prove sin A(1+ tan A)+ cos A(1 + cot A) = sec A + cosec A.
LHS = sin A(1+ tan A)+ cos A(1 + cot A)
= sin A + sin^2 A/ cos A + cos A + cos^2 A/ sin A
= sin A + cos A + [sin^3 A + cos^3 A]/sin A cos A
=[ sin^2 A cos A + cos^2 A sin A + sin^3 A + cos^3 A]/sin A cos A
= [ sin^2 A cos A +cos^3 A + cos^2 A sin A + sin^3 A]/sin A cos A
= [cos A (sin^2 A + cos^2 A) + sin A (sin^2 A + cos^2 A)]/sin A cos A
= [cos A +sin A]/sin A cos A
= (1/sin A) + (1/cos A)
= cosec A + sec A = RHS.
Proved.
Answered by
0
Answer:
have any problems .....you can msg me....
Attachments:
Similar questions
English,
4 months ago
Science,
4 months ago
Math,
9 months ago
Physics,
1 year ago
Social Sciences,
1 year ago