Prove that sinA-cosA+1/sinA+cosA-1=1/sec A-tan A?
Answers
Answered by
16
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
- REFER TO ATTACHMENT༒
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Attachments:
Answered by
0
How do I prove sinA-cosA+1/sinA+cosA-1=1/secA-tanA?
Hi,
LHS = sinA-cosA+1/sinA+cosA-1
divide both numerator and denominator by cosA
[math]LHS = (tanA - 1 + secA) / (tanA + 1 - secA)[/math]
Now
[math]sec^2 A = 1 + tan^2 A [/math]
[math]sec^2 A - tan^2 A = 1[/math]
Using above relation at denominator of LHS
[math]LHS = (tanA - 1 + secA) / (tanA - secA + sec^2 A - tan^2 A)[/math]
[math]LHS = (tanA - 1 + secA) / ((secA - tanA) (-1 + secA + tanA))[/math]
[math] LHS = 1 / (secA-tanA)[/math]
[math]LHS = RHS[/math]
Hence Proved.
I think above proof will clear your doubt,
All the best.
Similar questions