Prove that sinA-cosA+1/sinA+cosA-1=1/secA-tanA
Answers
Answered by
1
Step-by-step explanation:
LHS
devide cosA in both numerator & denominator
tanA-1+secA/tanA+1-secA
=(tanA+secA)-1/(tanA-secA)+1
={(tanA+secA)-1}(tanA-secA)/ {tanA-secA+1}(tanA-secA)
=(tan²A-sec²A)-(tanA-secA)/ (tanA-secA+1)(tanA-secA)
=-1-tanA+secA/ (tanA-secA+1)(tanA-secA)
=-1/tanA-secA
=1/secA-tanA
Similar questions