Math, asked by adhwaith, 1 year ago

Prove that(sina + cosa)^2 +(cosa + seca)^2 = 7+tan^2a +cot^2s


Rahul1113: 255

Answers

Answered by Hemamalini15
2
I hope this helps you ☺
Attachments:
Answered by Anonymous
0

\bf\huge LHS = (sinA + cosecA)^2 + (cosA + secA)^2


\bf\huge (sin^2 A + cosec^2 A + 2sinA cosecA ) + (cos^2 A + sec^2 A + 2 cosA SecA)


\bf\huge (sin^2 A + cosec^2 A + 2 sinA . \frac{1}{sinA}) + (cos^2A + sec^2 A + 2 cosA . \frac{1}{cosA})


\bf\huge (sin^2 A + cosec^2 A + 2) + (cos^2 A + sec^2 A + 2)


\bf\huge (sin^2 A + cos^2 A + 2) + (cos^2 A + sec^2 A + 2)


\bf\huge sin^2 A + cos^2 A + cosec^2 A + sec^2 A + 4


\bf\huge 1 + (1 + cot^2) + (1 + tan^2 A) + 4



\bf\huge 7 + tan^2 A + cot^2 A


Similar questions