prove that sinA - cosA the whole square + 2 sinA cosA is equal to 1
Answers
Answered by
1
Step-by-step explanation:
(sinA-cosA)²+2sinAcosA=1
L.H.S= (sinA-cosA)²+2sinAcosA
(sin²A +cos²A -2sinAcosA) +2sinAcosA
sin²A + cos²A-2sinAcosA+2sinAcosA
1+0
1
L.H.S=R.H.S
Answered by
3
Step-by-step explanation:
(sin A -cos A)^2 + 2 sinA cosA = 1
sin A -cos A)^2 + 2 sinA cosA = 1sin^2 A + cos^2A -2 sinA cosA + 2 sinA cosA = 1
sin A -cos A)^2 + 2 sinA cosA = 1sin^2 A + cos^2A -2 sinA cosA + 2 sinA cosA = 1sin^2 A + cos^2A = 1
sin A -cos A)^2 + 2 sinA cosA = 1sin^2 A + cos^2A -2 sinA cosA + 2 sinA cosA = 1sin^2 A + cos^2A = 11 = 1 (sin^2 A + cos^2A = 1)
Hope it is helpful for you ✌❤
Similar questions