Math, asked by bunnyruthvicksp4k73l, 1 year ago

prove that (sinA + cosecA)²+(cosA + secA)² = 7 + tan² A + cot²A​

Answers

Answered by sprao53413
3

Answer:

Please see the attachment

Attachments:
Answered by Anonymous
125

AnswEr :

To Prove :

(sinA + cosecA)² + (cosA + secA)² = 7 + tan²A + cot²A

Proof :

⇒ (sinA + cosecA)² + (cosA + secA)²

  • (a + b)² = a² + b² + 2ab

⇒ ( sin²A + cosec²A + 2 × sinA × cosecA ) + ( cos²A + sec²A + 2 × cosA × secA )

  • cosecA = 1 / sinA
  • secA = 1 / cosA

⇒ ( sin²A + cosec²A + 2 × sinA × 1 /sinA ) + ( cos²A + sec²A + 2 × cosA × 1 /cosA )

⇒ sin²A + cosec²A + 2 + cos²A + sec²A + 2

⇒ ( sin²A + cos²A ) + cosec²A + sec²A + 4

  • ( sin²A + cos²A ) = 1

⇒ 1 + cosec²A + sec²A + 4

⇒ 5 + cosec²A + sec²A

  • cosec²A = 1 + cot²A
  • sec²A = 1 + tan²A

⇒ 5 + 1 + cot²A + 1 + tan²A

7 + tan²A + cot²A Hence, Proved!

Similar questions