prove that (sina + coseca)2 + (cosa + seca)2
= tan?c + cote +7
Answers
Answered by
1
Step-by-step explanation:
LHS
= (sin^2A+cosec^2A+2sinAcosecA)+(Cos^2A+sec^2 A+2secAcosA).
=sin^2A +cos^2 A + cosec^2A +2sinAcosecA+ sec^2 A +2secA Cos A
= 1+(1+cot^2A) + 2 sinA × 1/sinA + (1 + tan^2A) + 2 Cos A 1/Cos A
= 7 + tan^2A + cot^2A
Answered by
0
Answer:
Step-by-step explanation:
(sin^2A+cosec^2A+2sinAcosecA)+(Cos^2A+sec^2 A+2secAcosA).
=sin^2A +cos^2 A + cosec^2A +2sinAcosecA+ sec^2 A +2secA Cos A
= 1+(1+cot^2A) + 2 sinA × 1/sinA + (1 + tan^2A) + 2 Cos A 1/Cos A
= 7 + tan^2A + cot^2A
Therefore
LHS=RHS
mark me as BRAINLIEST
Similar questions