Math, asked by puja9713, 11 months ago

prove that (sina + coseca)2 + (cosa + seca)2
= tan?c + cote +7​

Answers

Answered by aslam2186
1

Step-by-step explanation:

LHS

= (sin^2A+cosec^2A+2sinAcosecA)+(Cos^2A+sec^2 A+2secAcosA).

=sin^2A +cos^2 A + cosec^2A +2sinAcosecA+ sec^2 A +2secA Cos A

= 1+(1+cot^2A) + 2 sinA × 1/sinA + (1 + tan^2A) + 2 Cos A 1/Cos A

= 7 + tan^2A + cot^2A

Answered by Manideep1105
0

Answer:

Step-by-step explanation:

(sin^2A+cosec^2A+2sinAcosecA)+(Cos^2A+sec^2 A+2secAcosA).

=sin^2A +cos^2 A + cosec^2A +2sinAcosecA+ sec^2 A +2secA Cos A

= 1+(1+cot^2A) + 2 sinA × 1/sinA + (1 + tan^2A) + 2 Cos A 1/Cos A

= 7 + tan^2A + cot^2A

Therefore

LHS=RHS

mark me as BRAINLIEST

Similar questions