PROVE THAT : sinA / cotA +cosecA = 2+ sinA / cotA - cosecA
Answers
Answered by
52
LHS
=sinA/cotA+cosecA
=sinA/(cosA/sinA+1/sinA)
=sinA/{(cosA+1)/sinA}
=sin²A/(1+cosA)
=(1-cos²A)/(1+cosA)
=(1+cosA)(1-cosA)/(1+cosA)
=1-cosA
RHS
=2+sinA/cotA-cosecA
=2+sinA/(cosA/sinA-1/sinA)
=2+sinA/{(cosA-1)/sinA}
=2+sin²A/{-(1-cosA)}
=2-{(1-cos²A)/(1-cosA)}
=2-{(1+cosA)(1-cosA)/(1-cosA)}
=2-(1+cosA)
=2-1-cosA
=1-cosA
∴, LHS=RHS
=sinA/cotA+cosecA
=sinA/(cosA/sinA+1/sinA)
=sinA/{(cosA+1)/sinA}
=sin²A/(1+cosA)
=(1-cos²A)/(1+cosA)
=(1+cosA)(1-cosA)/(1+cosA)
=1-cosA
RHS
=2+sinA/cotA-cosecA
=2+sinA/(cosA/sinA-1/sinA)
=2+sinA/{(cosA-1)/sinA}
=2+sin²A/{-(1-cosA)}
=2-{(1-cos²A)/(1-cosA)}
=2-{(1+cosA)(1-cosA)/(1-cosA)}
=2-(1+cosA)
=2-1-cosA
=1-cosA
∴, LHS=RHS
Answered by
2
Step-by-step explanation:
Given that:
Solution:
Take LHS
Multiply and divide by
Now take RHS
From Eq1 and eq2
it is proved that
Hope it helps you.
Similar questions