Math, asked by pps1weenatprathaCh, 1 year ago

PROVE THAT : sinA / cotA +cosecA = 2+ sinA / cotA - cosecA

Answers

Answered by ARoy
52
LHS
=sinA/cotA+cosecA
=sinA/(cosA/sinA+1/sinA)
=sinA/{(cosA+1)/sinA}
=sin²A/(1+cosA)
=(1-cos²A)/(1+cosA)
=(1+cosA)(1-cosA)/(1+cosA)
=1-cosA
RHS
=2+sinA/cotA-cosecA
=2+sinA/(cosA/sinA-1/sinA)
=2+sinA/{(cosA-1)/sinA}
=2+sin²A/{-(1-cosA)}
=2-{(1-cos²A)/(1-cosA)}
=2-{(1+cosA)(1-cosA)/(1-cosA)}
=2-(1+cosA)
=2-1-cosA
=1-cosA
∴, LHS=RHS
Answered by hukam0685
2

Step-by-step explanation:

Given that:

 \frac{sinA}{cotA + cosec A}  = 2 + \frac{sin A}{cotA  -  cosec A} \\  \\

Solution:

Take LHS

Multiply and divide by

cotA  -  cosec A \\  \\

 \frac{sin A}{cotA + cosec A} \times  \frac{cotA  - cosec A}{cotA  -  cosecA}  \\  \\  =  \frac{sin A(cotA  - cosec A)}{ {cot}^{2} A - {cosec}^{2} A}  \\  \\  \because {cosec}^{2}A - {cot}^{2} A = 1 \\  \\  = \frac{sin A(cosecA  - cot A)}{1} \\  \\  = sin A\bigg( \frac{1}{sin A}  -  \frac{cos A}{sin A} \bigg) \\  \\

 = sin A\bigg( \frac{1 - cos A}{sinA}\bigg  ) \\  \\ = 1  - cos A  \:  \:  \:  \: ...eq1\\  \\

Now take RHS

2 + \frac{sin A}{cotA  -  cosec A} \\  \\  = 2 + \frac{sin A}{cotA  -  cosec A} \times  \frac{cotA +   cosec A}{cotA   +  cosec A}  \\  \\  = 2  -  \frac{sin A(cotA    + cosec A)}{ {cosec}^{2} A -  {cot}^{2}  A }  \\  \\  = 2 - sin A(cotA    + cosec A) \\  \\  = 2 - sin A\bigg(\frac{cos A}{sinA}    +  \frac{1}{sin A} \bigg) \\ \\  = 2 -  \frac{sin A(1 + cos A)}{sin A}  \\  \\  = 2 - 1 - cos A \\  \\  = 1 - cos A \:  \:  \:  \: ...eq2 \\  \\

From Eq1 and eq2

it is proved that

 \frac{sinA}{cotA + cosec A}  = 2 + \frac{sin A}{cotA  -  cosec A} \\  \\

Hope it helps you.

Similar questions