Math, asked by ashwin52, 1 year ago

prove that (sinA+secA)^2+(cosA+cosecA)^2=(1+secA.cosecA)^2

Answers

Answered by mhesh1
10
I believe this is the solution.
Attachments:
Answered by Shubhendu8898
1

Given,

(\sin A+\sec A)^{2}+(\cos A+cosecA)^{2}\\ \\=\sin^{2}A+\sec^{2}A+2\sin A\sec A+\cos^{2}A+cosec^{2}A+2\cos A.cosecA\\\\=\sin^{2}A+cos^{2}A+\sec^{2}A+2\sin A\sec A+cosec^{2}A+2\cos A.cosecA\\\\=1+\sec^{2}A+cosec^{2}A+2\sin A.\sec A+2\cos A.cosecA\\\\=1+\frac{1}{\cos^{2}A}+\frac{1}{\sin^{2}A}+\frac{2\sin A}{\cos A}+\frac{2\cos A}{\sin A}\\\\=1+\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A\cos^{2}A}+2(\frac{\sin^{2}A+\cos^{2}A}{\sin A\cos A})\\\\=1+\frac{1}{\sin^{2}A\cos^{2}A}+2(\frac{1}{\sin A\cos A})\\\\=1+cosec^{2}A.\sec^{2}A+2\times1\times\sec A.cosecA\\ \\=(1+\sec A.cosecA)^{2}\\\\\textbf{Hence,Proved}

Note:\\1.\sin^{2}A+\cos^{2}A=1\\\\2.\sin A=\frac{1}{cosecA}\\\\3.\cos A=\frac{1}{\sec A}\\\\4.(a+b)^{2}=a^{2}+b^{2}+ab

Similar questions