Prove that (sinA+secA) 2 +(cosA+cosecA ) 2 =(1+secAcosecA ) 2
Answers
Answered by
65
(sinA + secA)² + (cosA + cscA)²
= (sinA + 1/cosA)² + (cosA + 1/sinA)²
= sin²A + 2sinA/cosA + 1/cos²A + cos²A + 2cosA/sinA + 1/sin²A
= (sin²A + cos²A) + (2sinA/cosA + 2cosA/sinA) + (1/cos²A + 1/sin²A)
= 1 + 2(sin²A+cos²A)/(sinAcosA) + (sin²A+cos²A)/(sin²Acos²A)
= 1 + 2/(sinAcosA) + 1/(sin²Acos²A)
= (1 + 1/(sinAcosA))²
= (1 + secA cscA)²
This doesn't seem to match your solution since you have + sign after secA
We can always go back 1 step and rewrite this differently:
= (1 + 1/(sinAcosA))²
= (1 + (sin²A+cos²A)/(sinAcosA))²
= (1 + sin²A/(sinAcosA) + cos²A/(sinAcosA))²
= (1 + sinA/cosA + cosA/sinA)²
= (1 + tanA + cosA)²
= (sinA + 1/cosA)² + (cosA + 1/sinA)²
= sin²A + 2sinA/cosA + 1/cos²A + cos²A + 2cosA/sinA + 1/sin²A
= (sin²A + cos²A) + (2sinA/cosA + 2cosA/sinA) + (1/cos²A + 1/sin²A)
= 1 + 2(sin²A+cos²A)/(sinAcosA) + (sin²A+cos²A)/(sin²Acos²A)
= 1 + 2/(sinAcosA) + 1/(sin²Acos²A)
= (1 + 1/(sinAcosA))²
= (1 + secA cscA)²
This doesn't seem to match your solution since you have + sign after secA
We can always go back 1 step and rewrite this differently:
= (1 + 1/(sinAcosA))²
= (1 + (sin²A+cos²A)/(sinAcosA))²
= (1 + sin²A/(sinAcosA) + cos²A/(sinAcosA))²
= (1 + sinA/cosA + cosA/sinA)²
= (1 + tanA + cosA)²
vaibhav741852:
pls mark as brainliest answer
Answered by
90
Given,
Similar questions