Math, asked by sudireddyshekarreddy, 10 months ago

prove that sinA×secA+cosA×cosecA=secA×cosecA​

Answers

Answered by Anonymous
17

Question :-

Prove that :

 \red{\sin a \:  \times  \sec  a} \:  +  \cos  a \: \green{  \times  \cosec  a \: }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sec a \:  \times  \cosec a \:  \\

Proof :-

Taking LHS

 \to \: \red{\sin a \:  \times  \sec  a} \: \green{  +  \cos  a \:{  \times  \cosec  a \:} } \:  \\  \\  \sf \because \:  \sec a =  \frac{1}{ \cos a}  \:  \: and \:  \:  \cosec a =  \frac{1}{ \sin a}  \\  \\  \to \:  \frac{ \sin a}{ \cos a}  +  \green{ \frac{ \cos a}{ \sin a}}  \\  \\  \to   \frac{  \red{{ \sin}^{2}a +  { \cos}^{2}a  }}{  \purple{\cos a \:  \sin a}}  \\  \\  \because  \boxed{ { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1} \\  \\  \to \pink{ \:  \frac{1}{ \cos a}  }\times  \frac{1}{ \sin a}  \\  \\  \to \sec a \:  \cosec a \:

Hence proved ; )

Answered by rohanstarman
0

Answer:

Step-by-step explanation:

= sinA * 1/cosA + cosA * 1/sinA

=sinA/cosA + cosA/sinA

= (sin^{2}A+cos^{2}A)/cosAsinA

=1/cosAsinA

=1/cosA * 1/sinA

=secA * cosecA

=RHS

Similar questions