prove that sinA.sin(A+B) = sin^A.cosB+1/2 ×sin2A.sinB
Answers
Answered by
9
see the image. Mark as brainliest
Attachments:
LEGENDRANK:
thanks a lot bro ...
Answered by
2
Hi ,
****************************
1 ) sin( A + B ) = sinAcosB+cosA sinB
2 ) 2sinAcosA = sin2A
*****************"********************
Now ,
LHS = sinAsin( A+ B )
= sinA[ sinAcosB + cosAsinB ]
= sin² A cosB + sinAcosAsinB
= sin² A cosB + (1/2× 2sinAcosA)sinB
= sin² A cosB +(1/2) sin2AsinB
= sin² AcosB +( 1/2 )sin2A sinB
= RHS
Hence proved .
I hope this helps you.
: )
****************************
1 ) sin( A + B ) = sinAcosB+cosA sinB
2 ) 2sinAcosA = sin2A
*****************"********************
Now ,
LHS = sinAsin( A+ B )
= sinA[ sinAcosB + cosAsinB ]
= sin² A cosB + sinAcosAsinB
= sin² A cosB + (1/2× 2sinAcosA)sinB
= sin² A cosB +(1/2) sin2AsinB
= sin² AcosB +( 1/2 )sin2A sinB
= RHS
Hence proved .
I hope this helps you.
: )
Similar questions