Math, asked by haarika78, 2 months ago

prove that sinA+sinB/cosA-cosB=tan(A+B)/2​

Answers

Answered by sharanyalanka7
4

Answer:

Step-by-step explanation:

Correct Question :-

Prove that :-

\dfrac{sinA+sinB}{cosA+cosB}=tan\left(\dfrac{A+B}{2}\right)

To Prove :-

\dfrac{sinA+sinB}{cosA+cosB}=tan\left(\dfrac{A+B}{2}\right)

Formula Required :-

sinx + siny = 2sin(x+y/2)cos(x-y/2)

cosx + cosy = 2cos(x+y/2)cos(x-y/2)

Solution :-

Taking L.H.S :-

=\dfrac{sinA+sinB}{cosA+cosB}

Substituting the formula :-

=\dfrac{2sin\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{A-B}{2}\right)}{2cos\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{A-B}{2}\right)}

Cancelling the common terms :-

=\dfrac{sin\left(\dfrac{A+B}{2}\right)}{cos\left(\dfrac{A+B}{2}\right)}

= tan(A+B/2)

= R.H.S

Hence Proved

Similar questions