Math, asked by poonamalok, 5 months ago

prove that sinh^-1(tanx)=logtan(x/2+π /4)

Answers

Answered by Anonymous
49

Step-by-step explanation:

the environment is consist of biosphere lithosphere, hydrosphere and atmosphere it's chief components are soil, air, water, organisms and solar energies. . . . . . . .

Answered by InsaneBanda
0

\huge{\mid{\boxed{\sf{\color{purple}{AnS}{\color{pink}{WeR}}}}}\mid}

Question :-

If tan(x/2) = tanh(u/2), prove that

u = log tan(π/4 + u/2).

Proof :-

Given, tan(x/2) = tanh(u/2)

⇒ tan(x/2) =

 \frac{ sinh(u / 2 )}{cosh \: (u/2) }

⇒tan(x/2) =

 \frac{e {}^{u} -  e  { }^{ - u/2}}{e {}^{u/2}  + e  {}^{ -u /2} }

⇒ tan(x/2) = (eᵘ - 1)/(eᵘ + 1)

⇒ eᵘ - 1 = (eᵘ + 1) tan(x/2)

⇒ eᵘ - 1 = eᵘ tan(x/2) + tan(x/2)

⇒ {1 - tan(x/2)} eᵘ = 1 + tan(x/2)

⇒ eᵘ = {1 + tan(x/2)}/{1 - tan(x/2)}

⇒ eᵘ = tan(π/4 + x/2)

⇒ u = log tan(π/4 + x/2)

Hence, proved.

Rules :

• tanh(x) = {sinh(x)}/{cosh(x)}

• sinh(x) = (eˣ - e⁻ˣ)/2

• cosh(x) = (eˣ + e⁻ˣ)/2

• tan(A + B) = (tanA + tanB)/(1 - tanA tanB)

• eˣ = k ⇒ x = logₑk

Similar questions