Prove that ( sinØ - cos Ø +1 )/(sinØ + cos Ø -1 ) = 1/(SecØ - tan Ø)
Using identity sec² Ø = 1 + tan² Ø
Answers
Answered by
10
Q. Prove that (sin Ø - cos Ø + 1) / (sin Ø + cos Ø - 1) = 1/(sec Ø - tan Ø) using the identity sec² Ø = 1 + tan² Ø
Solution :
We apply the identity involving sec Ø and tan Ø, let us first convert the LHS in terms of sec Ø and tan Ø by dividing numerator and denominator by cos Ø.
LHS = ( sinØ- cosØ + 1 ) / ( sin Ø + cos Ø - 1 )
= ( tanØ - 1 + secØ ) / ( tanØ + 1 - secØ )
= ( tanØ + secØ ) - 1 / ( tanØ - secØ ) + 1
= { (tanØ + secØ) - 1 }(tanØ - secØ) / (tanØ - secØ) + 1 }(tanØ - secØ)
= [ ( tan²Ø - sec²Ø) - ( tanØ - secØ ) ] / [ { tanØ - secØ + 1 } ( tanØ - secØ ) ]
= ( - 1 - tanØ + secØ ) / ( tanØ - secØ + 1 )(tanØ - secØ)
= -1 / (tanØ - secØ)
= 1/(secØ - tanØ)
Which is the RHS of the identity, we are required to prove.
Solution :
We apply the identity involving sec Ø and tan Ø, let us first convert the LHS in terms of sec Ø and tan Ø by dividing numerator and denominator by cos Ø.
LHS = ( sinØ- cosØ + 1 ) / ( sin Ø + cos Ø - 1 )
= ( tanØ - 1 + secØ ) / ( tanØ + 1 - secØ )
= ( tanØ + secØ ) - 1 / ( tanØ - secØ ) + 1
= { (tanØ + secØ) - 1 }(tanØ - secØ) / (tanØ - secØ) + 1 }(tanØ - secØ)
= [ ( tan²Ø - sec²Ø) - ( tanØ - secØ ) ] / [ { tanØ - secØ + 1 } ( tanØ - secØ ) ]
= ( - 1 - tanØ + secØ ) / ( tanØ - secØ + 1 )(tanØ - secØ)
= -1 / (tanØ - secØ)
= 1/(secØ - tanØ)
Which is the RHS of the identity, we are required to prove.
GodsOWNGirl:
Over smart!! haha what is this???
Answered by
15
Heya !!
Here's your solution !!!
_______________________________
LHS = sin∅ - cos∅ +1/ sin∅+cos∅-1
Divided both numerators and denominator by cos∅
LHS = (tan∅ - 1+ sec∅)/(tan∅+1-sec∅)
NOW,
sec²∅ = 1+tan²∅
sec²∅ = tan²∅ = 1
Using above relation at denominator of LHS
LHS = (tan∅ - 1 + sec∅) (tan∅ - sec∅+ sec²∅ - tan²∅)
LHS = ( tan∅ - 1 +sec∅)/
((sec∅ - tan∅)(-1 + sec∅ + tan∅))
LHS = 1/(sec∅ - tan∅)
LHS = RHS
HENCE PROVED
______________________________
GLAD HELP YOU.
It helps you,
Thank you☻
@vaibhav246
Here's your solution !!!
_______________________________
LHS = sin∅ - cos∅ +1/ sin∅+cos∅-1
Divided both numerators and denominator by cos∅
LHS = (tan∅ - 1+ sec∅)/(tan∅+1-sec∅)
NOW,
sec²∅ = 1+tan²∅
sec²∅ = tan²∅ = 1
Using above relation at denominator of LHS
LHS = (tan∅ - 1 + sec∅) (tan∅ - sec∅+ sec²∅ - tan²∅)
LHS = ( tan∅ - 1 +sec∅)/
((sec∅ - tan∅)(-1 + sec∅ + tan∅))
LHS = 1/(sec∅ - tan∅)
LHS = RHS
HENCE PROVED
______________________________
GLAD HELP YOU.
It helps you,
Thank you☻
@vaibhav246
Similar questions