CBSE BOARD XII, asked by MysticalBoy, 11 months ago

Prove that Sinx + Sin3x + Sin5x =0

Answers

Answered by rishika79
3

Answer:

Explanation:

Hope it helps you.. .

Have a great day.. .

Thanks

Attachments:
Answered by Anonymous
24

ANSWER:-

To prove:

sinx + sin3x +sin5x = 0

Proof:

The given trigonometric equation is;

sinx + sin3x + sin5x =0.

 =  > sin 3x + (sin5x + sinx) = 0 \\  \\  =  > sin3x + 2sin( \frac{5x + x}{2} )cos( \frac{5x - x)}{2}  = 0 \:  \:  \:  \:  \:  \:  \: [sinA+ sinB = 2sin( \frac{A + B}{2} )cos( \frac{A  - B}{2} )]\\  \\  =  > sin3x + 2sin \frac{6x}{2} cos \frac{4x}{2}  = 0 \\  \\  =  > sin3x + 2sin3xcos2x = 0 \\  \\  =  > sin3x(1 + 2cos2x) = 0 \\  \\  =  > sin3x = 0 \\  \\  =  > 3x = n\pi \\  \\  =  > x =  \frac{n\pi}{3} , n∈z  \\  \\And ,\\  \\  1 + 2cos2x = 0 \\  \\  =  > cos2x =   - \frac{1}{2}  \\ We \: know \: that \: cos( \frac{2\pi}{3} ) =   - \frac{1}{2}  \\  \\  =  > 2x = 2m\pi ± \frac{2\pi}{3}  \\  \\  =  >  x = m\pi ± \frac{\pi}{3} , \: m∈z \\ Thus, \\ The \: solution \: of \: the \: given \:equation \: is, \: x =  \frac{n\pi}{3}  \:  \: o r \:  \: x = m\pi ±\frac{\pi}{3}  \: where \: m ,n∈z

Hope it helps ☺️

Similar questions