Math, asked by chethanBC5200, 11 months ago

Prove that sinx+sin3x+sin5x+sin7x/cosx+cos3x+cos5x+cos7x=tan4x

Answers

Answered by DAKSHINDAYA
17

Step-by-step explanation:

USE THE FORMULA..

sin c+sin d = 2sin(c+d)/2 × cos(c-d)/2

cos c+ cos d = 2cos(c+d)/2 × cos(c-d)/2

Attachments:
Answered by lublana
7

Answer with Step-by-step explanation:

LHS :

\frac{sinx+sin3x+sin5x+sin7x}{cosx+cos3x+cos5x+cos7x}

\frac{(sinx+sin3x)+(sin5x+sin7x)}{(cosx+cos3x)+(cos5x+cos7x)}

We know that

sinx+siny=2sin\frac{x+y}{2}cos\frac{x-y}{2}

cosx+cosy=2cos\frac{x+y}{2}cos\frac{x-y}{2}

Using the formula

\frac{2sin2xcosx+2sin6xcosx}{2cos2xcosx+2cos6xcosx}

\frac{2cosx(sin2x+sin6x}{2cosx(cos2x+cos6x)}

\frac{sin2x+sin6x}{cos2x+cos6x}

\frac{2sin4xcos2x}{2cos4xcos2x}

\frac{sin4x}{cos4x}

tan4x=RHS

Using the formula

tanx=\frac{sinx}{cosx}

Hence, proved.

#Learn more:

https://brainly.in/question/1023077:Answered by Abhi

Similar questions