Math, asked by mdrizwan4966, 1 year ago

Prove that sinx-siny/cosx+cosy=tan x-y/2

Answers

Answered by Anonymous
41
Sinx - Siny /CosX+CosY= tan(X-Y)/2


We know trigonometry sum identities

SinX-SinY= 2Cos (X+Y)/2 × Sin(X-Y)/2

Similarly

CosX+ CosY = 2Cos(X+Y)/2 × Cos(X-Y)/2

putting the value

Now
LHS
  \frac{ \sin(x) -  \sin(y)  }{ \cos(x)  +  \cos(y) }  =    \frac{ \sin( \frac{x - y}{2} ) }{ \cos( \frac{x - y}{2} ) }  \\  \\  =  \tan( \frac{x - y}{2} )

R.HS
tan (x-y)/2

LHS=RHS proved
Answered by sudhavs19647
10

2cos x+y/2 sin x-y/2 / 2cos x+y/2 cos x-y/2 = tan x-y/2

Similar questions