Math, asked by Pratiksa, 1 year ago

Prove that square of any positive integer is of the form 4q or 4q+1 for some integer q

Answers

Answered by Shizarizvi1
912
Let 'a' be any positive integer.
b=4
by Euclid's division lemma,
a=bq+r
a²=(bq+r)²-------1.
r=0,1,2,3
from 1.
for r=0,
a²=(4q+0)²
a²=16q²
a²=4(4q²)
=4q, where q=4q².
for r=1,
a²=(4q+1)²
a²=16q²+1+8q
a²=4(4q²+2q)+1
a²=4q+1, where q=4q²+2q.

Pratiksa: Tnkuuuuuuuu ji
Shizarizvi1: my pleasure
Answered by Anonymous
436

Step-by-step explanation:


Let positive integer a be the any positive integer.

Then, b = 4 .


By division algorithm we know here

0 ≤ r < 4 , So r = 0, 1, 2, 3.


When r = 0


a = 4m


Squaring both side , we get


a² = ( 4m )²


a² = 4 ( 4m​²)


a² = 4q , where q = 4m²


When r = 1


a = 4m + 1


squaring both side , we get


a² = ( 4m + 1)²


a² = 16m² + 1 + 8m


a² = 4 ( 4m² + 2m ) + 1


a² = 4q + 1 , where q = 4m² + 2m


When r = 2


a = 4m + 2


Squaring both hand side , we get


a² = ​( 4m + 2 )²


a² = 16m² + 4 + 16m


a² = 4 ( 4m² + 4m + 1 )


a² = 4q , Where q = ​ 4m² + 4m + 1


When r = 3


a = 4m + 3


Squaring both hand side , we get


a² = ​( 4m + 3)²


a² = 16m² + 9 + 24m


a² = 16m² + 24m ​ + 8 + 1


a² = 4 ( 4m² + 6m + 2) + 1


a² = 4q + 1 , where q = 4m² + 6m + 2



Hence ,Square of any positive integer is in form of 4q or 4q + 1 , where q is any integer.



THANKS



#BeBrainly.

Similar questions