Math, asked by ka9mr3utiingh, 1 year ago

Prove that root 2 is irrational

Answers

Answered by Anonymous
0
Proof that the square root of 2 is irrational. Assume is rational, i.e. it can be expressed as a rational fraction of the form , where and are two relatively prime integers. ... However, two even numbers cannot be relatively prime, so cannot be expressed as a rational fraction; hence is irrational.
Answered by LovelyG
4

Solution:

Let us assume that, √2 is a rational number of simplest form \frac{a}{b}, having no common factor other than 1.

√2 = \frac{a}{b}

On squaring both sides, we get ;

2 = \frac{a^{2}}{b^{2}}

⇒ a² = 2b²

Clearly, a² is divisible by 2.

So, a is also divisible by 2.

Now, let some integer be c.

⇒ a = 2c

Substituting for a, we get ;

⇒ 2b² = 2c

Squaring both sides,

⇒ 2b² = 4c²

⇒ b² = 2c²

This means that, 2 divides b², and so 2 divides b.

Therefore, a and b have at least 2 as a common factor. But this contradicts the fact that a and b have no common factor other than 1.

This contradiction has arises because of our assumption that √2 is rational.

So, we conclude that √2 is irrational.

Similar questions