Math, asked by Cheshta, 1 year ago

prove that-
ta theta + sin theta/ tan theta - sin theta = sec theta + 1/ sec theta - 1


Cheshta: Plss answer!!
Mathexpert: Check the answer.

Answers

Answered by Mathexpert
3
Given that
 \frac{tan  \theta + sin \theta}{tan \theta - sin \theta}  =  \frac{sec \theta + 1}{sec \theta - 1}

Consider LHS

 \frac{tan \theta + sin \theta}{tan \theta - sin \theta}

 \frac{Sin\theta( \frac{1}{cos\theta} + 1)}{Sin\theta( \frac{1}{cos\theta} - 1)}}

\frac{( \frac{1+cos\theta}{cos\theta})}{(\frac{1-cos\theta}{cos\theta})}}

\frac{(1+cos\theta)}{({1-cos\theta)}}

 \frac{1+ \frac{1}{sec\theta} }{1- \frac{1}{sec\theta} }

 \frac{sec\theta + 1}{sec\theta - 1}

Answered by doraemondorami2
1
(tan θ+sinθ)/(tanθ-sinθ)

⇒{(sinθ/cosθ)+sinθ}/{sinθ/cosθ-sinθ}
⇒sinθ(secθ+1)/sinθ(secθ-1)
⇒(secθ+1)/(secθ-1)
Similar questions