Math, asked by TejuSandhu511, 1 year ago

Prove that tan ^-1(√1+cosx+√1-cosx/√1+cosx-√1-cosx) = π/4-x/2

Answers

Answered by ajeshrai
3
you can see your answer
Attachments:
Answered by Shubhendu8898
3

 \tan^{-1}[\frac{\sqrt{1 + \cos x}   + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}}] \\ \\ = \tan^{-1}[\frac{\sqrt{1 + 2 \cos^{2}\frac{x}{2} -1 }   + \sqrt{1 - 1 + 2 \sin^{2}\frac{x}{2} }}{\sqrt{1 + 2 \cos^{2}\frac{x}{2} -1 } - \sqrt{1 - 1 + 2 \sin^{2}\frac{x}{2}} }]   \\ \\=  \tan^{-1}(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos\frac{x}{2} - \sin\frac{x}{2}}) \\ Since, \  \pi<x < 3\pi/2 \\ \\ Therefore, \ sin\frac{x}{2} \ \  \text{Will be  negative} \\ \\  = \tan^{-1}(\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}}) \\ \\=  \tan^{-1}(\frac{1  - \tan \frac{x}{2}}{1  + \tan\frac{x}{2}}) \\ \\ = \tan^{-1}(\frac{\tan\frac{\pi}{4}  - tan \frac{x}{2}}{\tan\frac{\pi}{2}  + \sin\frac{x}{2}})  \\ \\ =  \tan^{-1}(\tan\frac{\pi}{4})  -  \tan^{-1}(\tan\frac{x}{2}) \\ \\ = \frac{\pi}{4} - \frac{x}{2}

Similar questions