Math, asked by maimoona06102002, 9 months ago

prove that tan^-1(√1+x-√1-x)/(√1+x+√1-x)=π\4-1/2cos^-1x​

Attachments:

Answers

Answered by yashchoudhary5533005
3

Answer:

Hence proved

Step-by-step explanation:

here is your answer please press the ❤️ button and mark the answer as brainliest

Attachments:
Answered by sandy1816
2

 {tan}^{ - 1} ( \frac{ \sqrt{1 + x}  -  \sqrt{1 - x} }{ \sqrt{1 + x}  +  \sqrt{1 - x} } ) \\  \\ put \:  \:  \:  \: x = cos2 \theta \\  \\  2 \theta =  {cos}^{ - 1} x \\  \\  \theta =  \frac{1}{2} {cos}^{ - 1}x  \\  \\    {tan}^{ - 1} ( \frac{ \sqrt{1 + cos2 \theta}  -  \sqrt{1 - cos 2\theta} }{ \sqrt{1 + cos2  \theta}  +  \sqrt{1 - cos \theta} } ) \\  \\  =  {tan}^{ - 1} ( \frac{ \sqrt{2 {cos}^{2} \theta }  -  \sqrt{ 2{sin}^{2}  \theta} }{ \sqrt{2 {cos}^{2}  \theta} +  \sqrt{2 {sin}^{2} \theta }  } ) \\  \\  =  {tan}^{ - 1} ( \frac{cos \theta - sin \theta}{cos \theta + sin \theta} ) \\  \\  =  {tan}^{ - 1} ( \frac{1 - tan \theta}{1 + tan \theta} ) \\  \\  =  {tan}^{ - 1} tan( \frac{\pi}{4}  -  \theta) \\  \\  =  \frac{\pi}{4}  -  \theta \\  \\  =  \frac{\pi}{4}  -  \frac{1}{2}  {cos}^{ - 1} x

Similar questions