Prove that (tan+1/costheta)^2+tantheta-1/costheta)^2=1+sintheta/1-sintheta
GokulAchu:
can you clearly write the question
Answers
Answered by
0
(sec θ - tan θ )².
⇒ ( \bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta } )² .
⇒ ( \bf \frac{ 1 - sin \theta }{ cos \theta } )² .
⇒ \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .
⇒ \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }
⇒ \bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }
⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }
Similar questions