Math, asked by naeema003, 1 year ago

Prove that (tan+1/costheta)^2+tantheta-1/costheta)^2=1+sintheta/1-sintheta


GokulAchu: can you clearly write the question

Answers

Answered by dhruvasakhare
0

(sec θ - tan θ )².

⇒ ( \bf \frac{1}{ cos \theta } - \frac{ sin \theta }{ cos \theta }  )² .

⇒ (  \bf \frac{ 1 - sin \theta }{ cos \theta }  )² .

⇒  \bf\frac{{(1 - sin \theta })^{2}} {{cos}^{2} \theta} .

⇒  \bf \frac{ ( 1 - sin \theta )(1 - sin \theta ) }{1 - {sin}^{2} \theta }  

⇒  \bf \frac{ \cancel{ ( 1 - sin \theta )} (1 - sin \theta ) }{ \cancel{ ( 1 - sin \theta ) } ( 1 + sin \theta ) }  

⇒ (secθ - tanθ)² = \bf \frac{ 1-sin \theta }{1+sin \theta }

Similar questions