Math, asked by unnathiptalkad, 8 months ago

prove that tan^1 + cot^1x=π/2​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

\tt{Let\,\,\,tan^{-1}(x)=\,\theta}

\sf{\implies\,tan(\theta)=x}

\sf{\implies\,cot\bigg(\dfrac{\pi}{2}-\theta\bigg)=x}

\sf{\implies\,\dfrac{\pi}{2}-\theta=cot^{-1}(x)}

\sf{\implies\,cot^{-1}(x)=\dfrac{\pi}{2}-\theta}

\sf{\implies\,cot^{-1}(x)+\theta=\dfrac{\pi}{2}}

\sf{\implies\,cot^{-1}(x)+tan^{-1}(x)=\dfrac{\pi}{2}}

Similar questions