Prove that tan (√1+x+√1-x) /(√1+x+√1-x) =π/4+1/2cos^-1(x)
Answers
Answered by
1
Answer:
To prove
tan-1[1+x-1-x1+x+1-x]=π4-12cos-1x,-12≤x≤1
Taking LHS, we get:
tan-1[1+x-1-x1+x+1-x]
let x=cos2θ
tan-1[1+x-1-x1+cos2θ+1-cos2θ]=tan-1[1+cos2θ-1-cos2θ1+cos2θ+1-cos2θ]
=tan-1[cosθ-sinθcosθ+sinθ]
=tan-1[1-tanθ1+tanθ]
=tan-1tan(π4-θ)
=(π4-θ)
π
θ=π4−θ
π
=π4−12cos−1 x
=RHS
Hence proved.
Answered by
0
Similar questions