prove that ____tan^-1 (x-1/x-2)+tan^_1 (x+1/x+2)=90°
Attachments:
Answers
Answered by
1
Greetings,
The answer to your question is typed below↓
___________________________________________
Given
tan^-1[ (x-1) / (x-2) ] + tan^-1[ (x+1) / (x+2) ] = 45*
First, find x.
By taking tan^-1 common we get:
tan^-1[ (x-1)/(x-2) + (x+1) / (x+2) ] = 45
Then shift tan^-1 to RHS and simultaneously find LCM for LHS
⇒[ {(x-1)(x+2) + (x+1)(x-2)} / {(x-2)(x+2)} ] = 1 ∵[tan 45* = 1 ]
⇒ [ (x² + 2x - x - 2 + x² - 2x + x - 2) / (x² -4) ] = 1
⇒ (2x²-4) / (x²-4) = 1
⇒ 2x² - 4 = x² -4
⇒ x² = 0
⇒ x = 0
Then substituting x in the given equation, we get:
⇒ tan^-1 ( 1/2) + tan^-1 (1/2) = 45*
⇒ tan^-1 (1) = 45
= 45* = 45* [Proved]
__________________________________________________
P.S: Enjoy;)
The answer to your question is typed below↓
___________________________________________
Given
tan^-1[ (x-1) / (x-2) ] + tan^-1[ (x+1) / (x+2) ] = 45*
First, find x.
By taking tan^-1 common we get:
tan^-1[ (x-1)/(x-2) + (x+1) / (x+2) ] = 45
Then shift tan^-1 to RHS and simultaneously find LCM for LHS
⇒[ {(x-1)(x+2) + (x+1)(x-2)} / {(x-2)(x+2)} ] = 1 ∵[tan 45* = 1 ]
⇒ [ (x² + 2x - x - 2 + x² - 2x + x - 2) / (x² -4) ] = 1
⇒ (2x²-4) / (x²-4) = 1
⇒ 2x² - 4 = x² -4
⇒ x² = 0
⇒ x = 0
Then substituting x in the given equation, we get:
⇒ tan^-1 ( 1/2) + tan^-1 (1/2) = 45*
⇒ tan^-1 (1) = 45
= 45* = 45* [Proved]
__________________________________________________
P.S: Enjoy;)
Similar questions
Psychology,
8 months ago
Computer Science,
8 months ago
Math,
8 months ago
Chemistry,
1 year ago
English,
1 year ago