Prove that tan 1° tan 2° tan 3° ... tan 89° = 1
Answers
Answered by
1
Answer:
the answer for the given problem is 1
Attachments:
Answered by
3
Answer:
We have
tan 1° tan 2° tan 3°... tan 89° [LHS]
= tan 1°tan 2°... tan 44° tan 45° tan 46°... tan 88° tan 89°
= (tan 1°tan 89°)(tan 2° tan 88°)... (tan 44° tan 46°) tan 45°
= {(tan 1° tan (90° -1°)} . {tan 2° tan (90° -2°)} ...{tan 44° tan (90°-44°)} tan 45°*
= (tan 1°cot 1°)(tan 2°cot 2°)... (tan 44°cot 44°).1
[°.° tan (90°-8)= cot 0 and tan 45° = 1]
= 1×1×...×1×1
= 1.
LHS = RHS
Hence, proved!
Similar questions
Social Sciences,
5 months ago
Chemistry,
10 months ago
Science,
10 months ago
Psychology,
1 year ago
English,
1 year ago