Math, asked by arpan1234, 10 months ago

Prove that tan 15 Degree + cot 15 Degree = 4

Answers

Answered by bindu5147
0

Answer:

big proving that question I get answers 0

Attachments:
Answered by amitkumar44481
1

To ProvE :

tan 15°+ cot 15° = 4.

SolutioN :

 \tt : \implies tan \: 15 \degree + cot  \: 15\degree.

 \tt  : \implies  \dfrac{sin \: 15 \degree }{cos \: 15 \degree}+  \dfrac{cos 15\degree.}{sin \: 15 \degree}

Taking LCM.

 \tt : \implies  \dfrac{{sin}^{2}   15 \degree +{  cos }^{2}  15\degree}{sin \: 15 \degree.cos \: 15 \degree}

We know,

  • Sin²A + Cos²A = 1.

 \tt : \implies  \dfrac{1}{sin \: 15 \degree.cos \: 15 \degree}

 \tt : \implies  \dfrac{1}{ \dfrac{1}{2} sin \: 30\degree}

 \tt : \implies  \dfrac{1 \times 2}{ sin \: 30\degree}

We can Write as Sin 30° → π/6.

 \tt : \implies  \dfrac{2}{ sin \: \frac{ \pi}{6}  }

 \tt : \implies  4.

# Hence Proved.

Similar questions