Math, asked by Aayush0005, 7 months ago

Prove that: tan 3A – tan 2A – tan A = tan 3A tan 2A
tan A​

Answers

Answered by avitaylor101
7

Given :   tan 3A – tan 2A – tan A = tan 3A tan 2A tan A

To find : Prove  

Solution:

Tan3A = Tan(2A  + A)

as we know that Tan(X + Y)   = (TanX  + TanY) /(1 - TanXTanY)

X = 2A  & Y = A

=> Tan3A =   (Tan2A + TanA)/(1 - Tan2A.TanA)

=> (1 - Tan2A.TanA)Tan3A = Tan2A + TanA

=> Tan3A - Tan3A.Tan2A.TanA  = Tan2A + TanA

=> Tan3A - Tan2A - TanA = Tan3A.Tan2A.TanA

QED

Hence Proved

Tan3A - Tan2A - TanA = Tan3A.Tan2A.TanA

Answered by Anonymous
3

Solution (a)

3A= A+ 2A

⇒ tan 3A = tan (A + 2A)

⇒ tan 3 A = tanA + tan2A/ 1 – tan A . tan 2A

⇒ tan A + tan 2A = tan 3A – tan 3A. tan 2A . tan A

⇒ tan 3 A – tan 2A – tan A = tan 3A . tan 2A . tan A

Similar questions