Prove that: tan 3A – tan 2A – tan A = tan 3A tan 2A
tan A
Answers
Answered by
7
Given : tan 3A – tan 2A – tan A = tan 3A tan 2A tan A
To find : Prove
Solution:
Tan3A = Tan(2A + A)
as we know that Tan(X + Y) = (TanX + TanY) /(1 - TanXTanY)
X = 2A & Y = A
=> Tan3A = (Tan2A + TanA)/(1 - Tan2A.TanA)
=> (1 - Tan2A.TanA)Tan3A = Tan2A + TanA
=> Tan3A - Tan3A.Tan2A.TanA = Tan2A + TanA
=> Tan3A - Tan2A - TanA = Tan3A.Tan2A.TanA
QED
Hence Proved
Tan3A - Tan2A - TanA = Tan3A.Tan2A.TanA
Answered by
3
Solution (a)
3A= A+ 2A
⇒ tan 3A = tan (A + 2A)
⇒ tan 3 A = tanA + tan2A/ 1 – tan A . tan 2A
⇒ tan A + tan 2A = tan 3A – tan 3A. tan 2A . tan A
⇒ tan 3 A – tan 2A – tan A = tan 3A . tan 2A . tan A
Similar questions