Math, asked by aadi55, 1 year ago

prove that. tan 3x ×tan 2x ×tan x =tan3x - tan 2x - tan x

Answers

Answered by NidhraNair
20
hello... ☺


let
3x = 2x➕ x

take tan on both side

tan3x = tan (2x➕x)

tan3x = (tan2x➕tanx)➗1➖tan2x tanx

(1➖tan2x tanx)tan3x = tan2x➕tanx

tan3x ➖tanx tan2x tan3x = tan2x➖tanx

tanx tan2x tan3x = tan3x➖tan2x➖tanx

hence proved!!!


thank you ☺

aadi55: thx buddy
aadi55: are you from Kerala?
NidhraNair: yo
aadi55: Kerala?
NidhraNair: yaaaaaaa
aadi55: evda??
aadi55: veed?
Answered by Anonymous
14
We know that,

3x = 2x + x

Taking tan on both sides

 \tan(3x) = \tan(2x + x)

By using identity of tan. i.e.,

 \tan(x + y) = \frac{ \tan(x) + \tan(y) }{1 - \tan( x ) \tan(y) }\\

We get

 \tan(3x) = \frac{ \tan(2x) + \tan(x) }{1 - \tan(2x) \tan(x) } \\ \\ on \: cross \: multiplication \\ \\ \tan(3x) - \tan(3x) \tan(2x) \tan(x) \\= \tan(2x) + \tan(x)

 \tan(3x) \tan(2x) \tan(x) \\= \tan(3x) - \tan(2x) - \tan(x)

⭐HOPE IT MAY HELP YOU⭐
Similar questions