prove that. tan 3x ×tan 2x ×tan x =tan3x - tan 2x - tan x
Answers
Answered by
20
hello... ☺
let
3x = 2x➕ x
take tan on both side
tan3x = tan (2x➕x)
tan3x = (tan2x➕tanx)➗1➖tan2x tanx
(1➖tan2x tanx)tan3x = tan2x➕tanx
tan3x ➖tanx tan2x tan3x = tan2x➖tanx
tanx tan2x tan3x = tan3x➖tan2x➖tanx
hence proved!!!
thank you ☺
let
3x = 2x➕ x
take tan on both side
tan3x = tan (2x➕x)
tan3x = (tan2x➕tanx)➗1➖tan2x tanx
(1➖tan2x tanx)tan3x = tan2x➕tanx
tan3x ➖tanx tan2x tan3x = tan2x➖tanx
tanx tan2x tan3x = tan3x➖tan2x➖tanx
hence proved!!!
thank you ☺
aadi55:
thx buddy
Answered by
14
We know that,
Taking tan on both sides
By using identity of tan. i.e.,
We get
⭐HOPE IT MAY HELP YOU⭐
Taking tan on both sides
By using identity of tan. i.e.,
We get
⭐HOPE IT MAY HELP YOU⭐
Similar questions