Math, asked by anandkumarsingh3790, 1 year ago

prove that : tan [π/4 + 1/2 cos^-1 a/b] + tan[π/4 - 1/2 cos^-1 a/b] = 2b/a

Answers

Answered by AryanTennyson
29
ARYAN..........PVT.......LTD....
Attachments:
Answered by aquialaska
41

Answer:

We have to Prove: tan\left({{\pi\over4}+{1\over2}{{\cos}^{-1}}{a\over b}}\right)+tan\left({{\pi\over4}-{1\over2}{{\cos}^{-1}}{a \over b}}\right)={{2b} \over a}

={tan\left({{\pi\over 4}+{\theta\over2}}\right)}+{tan\left({{\pi\over4}-{\theta\over2}}\right)}

={{tan{\pi\over4}+tan{\theta\over2}}\over{1-tan{\pi\over4}\,tan{\theta\over2}}}+{{tan{\pi\over4}-tan{\theta \over2}}\over{1+tan{\pi\over4}\,tan{\theta\over2}}}\\\\\\

={{1+\tan{\theta \over 2}} \over {1 - \tan {\theta \over 2}}} + {{1 - tan{\theta \over 2}} \over {1 + \tan {\theta \over 2}}}\\\\\\={{{{\left( {1 + \tan {\theta \over 2}} \right)}^2} + {{\left( {1 - \tan {\theta \over 2}} \right)}^2}} \over {1 - {{\tan }^2}{\theta \over 2}}}\\\\\\

={{2\left( {1 + {{\tan }^2}{\theta \over 2}} \right)} \over {1 - {{\tan }^2}{\theta \over 2}}}\\\\\\= 2\left( {{1 \over {\cos \theta }}} \right)\\\\={{2b} \over a}\\\\= R.H.S.

Hence Proved

Similar questions