Math, asked by jatinpawar354, 10 months ago

prove that tan 45 - theta is equal to cos theta minus sin theta whole upon cos theta + sin theta​

Answers

Answered by BrainlyTornado
9

QUESTION:

Prove that :

\sf Tan \ (45^{\circ} - \theta)=\dfrac{Cos\ \theta-Sin\ \theta}{Cos\ \theta+Sin\ \theta}

GIVEN:

\sf Tan \ (45^{\circ} - \theta)=\dfrac{Cos\ \theta-Sin\ \theta}{Cos\ \theta+Sin\ \theta}

TO PROVE:

\sf Tan \ (45^{\circ} - \theta)=\dfrac{Cos\ \theta-Sin\ \theta}{Cos\ \theta+Sin\ \theta}

EXPLANATION:

 \boxed{ \boldsymbol{ \gray{Tan \ (x - y)=\dfrac{Tan \ x - Tan \ y }{1 + Tan \ x \ Tan \ y}}}}

\sf Tan \ (45^{\circ} - \theta)=\dfrac{Tan \ 45^{\circ} - Tan \ \theta}{1 + Tan \ 45^{\circ} \ Tan \ \theta}

 \boxed{ \boldsymbol{ \large {\gray{Tan \ 45^{\circ} = 1}}}}

\sf Tan \ (45^{\circ} - \theta)=\dfrac{1- Tan \ \theta}{1 + Tan \ \theta}

 \boxed{ \boldsymbol{ \large {\gray{Tan \ \theta= \dfrac{Sin \ \theta}{Cos \ \theta} }}}}

\sf Tan \ (45^{\circ} - \theta)=\dfrac{1- \dfrac{Sin \ \theta}{Cos \ \theta}}{1 + \dfrac{Sin \ \theta}{Cos \ \theta}}

\sf Tan \ (45^{\circ} - \theta)=\dfrac{\dfrac{Cos \ \theta - Sin \ \theta}{Cos \ \theta}}{ \dfrac{Cos \ \theta + Sin \ \theta}{Cos \ \theta}}

\sf Tan \ (45^{\circ} - \theta)=\dfrac{Cos \ \theta - Sin \ \theta}{Cos \ \theta + Sin \ \theta}

HENCE PROVED.

Trigonometric Ratio Table:

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

Similar questions