prove that tan 50-tan 40=2 tan 10
Answers
Answered by
366
hello friend!!
tan50=tan(40+10)
we have ,tan(a+b)=(tanA+tanB) (1-tanA tanB)
=tan(40+10)=(tan40+tan10)(1-tan40 tan10)
=tan50=(tan40+tan10)(1-tan40 tan10)
=tan50(1-tan40 tan10)=tan40+tan10.
=tan(1-tan40 tan10)=tan40+tan10.
=tan50-tan50 tan40 tan10=tan40+tan10
=and tan50 =tan(90-40)=cot40
=tan50-cot40 tan40 tan10 =tan40+tan10
=tan50-tan10=tan40+tan10
because cot40=1/tan 40
=tan50=tan40+tan10
so, tan50-tan40=2tan10
hope it helps!
please mark as brainliest
thank you!
#bebrainly..
tan50=tan(40+10)
we have ,tan(a+b)=(tanA+tanB) (1-tanA tanB)
=tan(40+10)=(tan40+tan10)(1-tan40 tan10)
=tan50=(tan40+tan10)(1-tan40 tan10)
=tan50(1-tan40 tan10)=tan40+tan10.
=tan(1-tan40 tan10)=tan40+tan10.
=tan50-tan50 tan40 tan10=tan40+tan10
=and tan50 =tan(90-40)=cot40
=tan50-cot40 tan40 tan10 =tan40+tan10
=tan50-tan10=tan40+tan10
because cot40=1/tan 40
=tan50=tan40+tan10
so, tan50-tan40=2tan10
hope it helps!
please mark as brainliest
thank you!
#bebrainly..
kvnmurty:
Hello.
Answered by
220
tan (A - B)= (tan A - tan B) / (1 + tanA tanB)
A=50. B=40 deg.
Tan 50 = cot (90-50)=1/tan40.
LHS = tan(50-40) * (1+ tan50*tan40)
= tan10 * (1+1)
= 2 tan 10.
A=50. B=40 deg.
Tan 50 = cot (90-50)=1/tan40.
LHS = tan(50-40) * (1+ tan50*tan40)
= tan10 * (1+1)
= 2 tan 10.
Similar questions