Math, asked by mohammedaliz23115, 1 month ago

prove that tan 70 - tan 20=2 tan 50

Attachments:

Answers

Answered by raoanirudh2006
0

Answer:

Step-by-step explanation:

tan 70° = tan (50° + 20°)

tan70   = tan50+tan20/1-tan50*tan20

(Since tan(A+B) = tanA+tanB/1-tanA*tanB)

tan 70° (1 – tan 50° tan 20°) = tan 50° + tan 20°

tan 70° - tan 70° tan 50° tan 20° = tan 50° + tan 20°

⇒ tan 70° - tan (90° - 20°) tan 50° tan 20° = tan 50° + tan 20°  

⇒ tan 70° - cot 20° tan 50° tan 20° = tan 50° + tan 20°

(Since tan(90-A)=cotA)

tan70-tan50=tan50+tan20

(Since cotA*tanA=1)

tan70=tan50+tan20+tan50

Therefore,

tan70=tan20+2tan50

tan70-tan20=2tan50

Hence Proved

Similar questions