prove that tan 70 - tan 20=2 tan 50
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
tan 70° = tan (50° + 20°)
tan70 = tan50+tan20/1-tan50*tan20
(Since tan(A+B) = tanA+tanB/1-tanA*tanB)
tan 70° (1 – tan 50° tan 20°) = tan 50° + tan 20°
tan 70° - tan 70° tan 50° tan 20° = tan 50° + tan 20°
⇒ tan 70° - tan (90° - 20°) tan 50° tan 20° = tan 50° + tan 20°
⇒ tan 70° - cot 20° tan 50° tan 20° = tan 50° + tan 20°
(Since tan(90-A)=cotA)
tan70-tan50=tan50+tan20
(Since cotA*tanA=1)
tan70=tan50+tan20+tan50
Therefore,
tan70=tan20+2tan50
tan70-tan20=2tan50
Hence Proved
Similar questions
Art,
29 days ago
Hindi,
29 days ago
Social Sciences,
29 days ago
Biology,
1 month ago
Physics,
1 month ago
Computer Science,
9 months ago
Social Sciences,
9 months ago