Math, asked by bijudebbarma707, 1 year ago

prove that tan 70°=2tan 50°+tan 20°​

Answers

Answered by ItSdHrUvSiNgH
19

Step-by-step explanation:

 \huge\blue{\underline{\underline{\bf Question:-}}}

prove \:  \: that \implies \\  \\  \tan(70)  = 2 \tan(50)  +  \tan(20)

 \huge\blue{\underline{\underline{\bf Answer:-}}}

 \huge\red{Formula:-}

  \boxed {\leadsto \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha ) +  \tan( \beta )  }{1 -  \tan( \alpha )  \tan( \beta ) } } \\  \\  \boxed{ \leadsto  \tan( \theta)  \times  \cot( \theta)  = 1}

We \: \: know... \\  \\   \tan(70)  =  \tan(50 + 20)  \\   \\  \implies  \tan(70)  =  \frac{ \tan(50) +  \tan(20)  }{1 -  \tan(50)  \tan(20) }  \\  \\  \implies  \tan(70)  \times (1 -  \tan(50)  \tan(20) \tan(70 ) ) =  \tan(50)  +  \tan(20)  \\  \\  We \:  \: know, \\  \\  \large \boxed{ \tan(20)  =  \cot(90 - 20)  =  \cot(70) } \\  \\  \implies \tan(70)  -  \tan(50)  =  \tan(50)  +  \tan(20)  \\  \\   \huge \boxed{ \implies  \tan(70)  = 2 \tan(50)  +  \tan(20) }

More basic identities..

 \\ 1) { \sin}^{2}(\theta) + {\cos}^{2}(\theta) = 1 \\ \\ 2) {\sec}^{2}(\theta) - {\tan}^{2} (\theta) = 1 \\ \\ 3) {\csc}^{2} (\theta) - {\cot}^{2} (\theta) = 1 \\ \\  4) \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \\ \\ 5) \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \\ \\ 6) \cot(\theta) = \frac{1}{\tan(\theta)} \\ \\ 7) \sin(\theta) = \frac{1}{\csc(\theta)} \\ \\ 8) \cos(\theta) = \frac{1}{\sec(\theta)}

Answered by ItzDinu
27

\huge{\textbf{\textsf{{\color{navy}{An}}{\purple{sw}}{\pink{er}} {\color{pink}{:}}}}}

  • Refer the Attachment
  • I Hope it's Helpful My Friend.

Attachments:
Similar questions
Math, 1 year ago