Prove that tan 8 − tan 5 − tan 3 = tan 8 .tan 5 .tan 3
Answers
Answered by
0
Step-by-step explanation:
We know 5+3=8
Apply tan on both sides
tan(5+3)=tan(8)
tan 5+tan3/[1-tan5tan3]=tan8
tan5+tan3=tan8-tan5tan3tan8
tan8tan5tan3=tan8-tan5-tan3
Answered by
0
Step-by-step explanation:
tan(A+B)=1−tanAtanB/tanA+tanB
⇒tanA+tanB=tan(A+B)(1−tanAtanB)
∴L.H.S=tan8θ−tan5θ−tan3θ
=tan8θ−(tan5θ+tan3θ)
=tan8θ−[tan(5θ+3θ)(1−tan5θtan3θ)]
=tan8θ−[tan8θ(1−tan5θtan3θ)]
=tan8θ−(tan8θ−tan8θtan5θtan3θ)
=tan8θ−tan8θ+tan8θtan5θtan3θ
=0+tan8θtan5θtan3θ
Similar questions