prove that: tan (90-B) = cot B
Answers
Answered by
2
tan A = cot B ------------ ( eq. i)
{ given }
also, tan A = cot ( 90 - A ) ------------ ( eq.ii ) { complimentary angle }
From eq. i & ii -
cot B = cot ( 90°- A )
⇒ B = 90° - A.
⇒ 90 ° = A + B.
⇒ A + B = 90 °. [ PROVED ] .
4.7
{ given }
also, tan A = cot ( 90 - A ) ------------ ( eq.ii ) { complimentary angle }
From eq. i & ii -
cot B = cot ( 90°- A )
⇒ B = 90° - A.
⇒ 90 ° = A + B.
⇒ A + B = 90 °. [ PROVED ] .
4.7
Answered by
5
❤
It is given that
tan A = cot B
⇒tan A=tan (90° −B )
{ °•° cot B = tan ( 90° − B ) }
⇒A = 90° −B
⇒A + B= 90°
Hence Proved
☺
Similar questions