Math, asked by theju27, 1 year ago

prove that tan a minus sin a by sin square A is equal to tan a by 1 + Cos A​

Answers

Answered by vik30
7

check the attachment

Attachments:

theju27: thank you very much
Answered by pinquancaro
3

\frac{\tan A-\sin A}{\sin^2 A}=\frac{\tan A}{1+\cos A} hence proved.

Step-by-step explanation:

To prove : \frac{\tan A-\sin A}{\sin^2 A}=\frac{\tan A}{1+\cos A}

Proof :

Taking LHS,

LHS=\frac{\tan A-\sin A}{\sin^2 A}

LHS=\frac{\frac{\sin A}{\cos A}-\sin A}{1-\cos^2 A}

LHS=\frac{\frac{\sin A-\sin A\cos A}{\cos A}}{1-\cos^2 A}

LHS=\frac{\sin A(1-\cos A)}{\cos A(1+\cos A)(1-\cos A)}

LHS=\frac{\sin A}{\cos A(1+\cos A)}

LHS=\frac{\frac{\sin A}{\cos A}}{\frac{\cos A(1+\cos A)}{\cos A}}

LHS=\frac{\tan A}{1+\cos A}

LHS=RHS

Hence proved.

#Learn more

Prove that tan square A minus sin square A is equals to tan square A into sin square A​

https://brainly.in/question/8919018

Similar questions