Math, asked by Anonymous, 1 year ago

Prove that tan A+ sec A-1 / tan A - sec A+1 = 1+sin A/cos A

Answers

Answered by Snehasweety
405
hope it helps you
mark as brainliest answer plzzz
Attachments:

Anonymous: Ok
Snehasweety: plzz mark as brainliest answer
Snehasweety: plzz
Answered by gratefuljarette
332

To Prove:

\frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\frac{1+\sin A}{\cos A}

Solution:    

\frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\frac{\tan A+\sec A-\left(\sec ^{2} A-\tan ^{2} A\right)}{\tan A-\sec A+1}

\left[\because 1+\tan ^{2} A=\sec ^{2} A \Rightarrow \sec ^{2} A-\tan ^{2} A=1\right]

=\frac{\tan A+\sec A-\{(\sec A-\tan A)(\sec A+\tan A)\}}{\tan A-\sec A+1}

Now, take(\tan A+\sec A) as a common term, we get

=\frac{(\tan A+\sec A)(1-\sec A+\tan A)}{\tan A-\sec A+1}

=\frac{(\tan A+\sec A)(\tan A-\sec A+1)}{\tan A-\sec A+1}

=\tan A+\sec A

=\frac{\sin A}{\cos A}+\frac{1}{\cos A}    

=\frac{1+\sin A}{\cos A}    

∴ Hence Proved

Similar questions