Math, asked by Aiswaryavinish9580, 10 months ago

Prove that tan A×sin A/tan A+sin A=tan A-sin A/tan A×sin A

Answers

Answered by codiepienagoya
0

Proving:

Step-by-step explanation:

\ Given \ value:\\\\\tan A \times \frac {\sin A}{\tan A} \ + \sin A \ = \tan A \ - \frac{\sin A}{\tan A} \times \sin A\\\\ \ Solution: \\\\\tan A \times \frac {\sin A}{\tan A} \ + \sin A \ = \tan A \ - \frac{\sin A}{\tan A} \times \sin A\\\\\ L.H.S: \\\\\tan A \times \frac {\sin A}{\tan A} \ + \sin A \\\\\rightarrow \sin A+ \sin A\\\\\rightarrow  \ 2 \sin A \\\\\ R.H.S \\\\\tan A \ - \frac{\sin A}{\tan A} \times \sin A\\\\

\rightarrow \tan A \ - \frac{\sin A \cos A}{\sin A} \times \sin A\\\\\rightarrow \frac{\sin A}{\cos A} \ - \cos A \sin A\\\\\rightarrow \frac{\sin A-  \cos^2 A \sin A}{\cos A}\\\\\rightarrow  \frac{\sin A(\ 1 -  \cos^2 A) }{\cos A}\\\\\rightarrow  \tan A \sin^2 A

L.H.S \neq R.H.S

Learn more:

  • Proving: https://brainly.in/question/8112701
Similar questions